64 research outputs found

    Incremental Stability and Performance Analysis of Discrete-Time Nonlinear Systems using the LPV Framework

    Get PDF
    The dissipativity framework is widely used to analyze stability and performance of nonlinear systems. By embedding nonlinear systems in an LPV representation, the convex tools of the LPV framework can be applied to nonlinear systems for convex dissipativity based analysis and controller synthesis. However, as has been shown recently in literature, naive application of these tools to nonlinear systems for analysis and controller synthesis can fail to provide the desired guarantees. Namely, only performance and stability with respect to the origin is guaranteed. In this paper, inspired by the results for continuous-time nonlinear systems, the notion of incremental dissipativity for discrete-time nonlinear systems is proposed, whereby stability and performance analysis is done between trajectories. Furthermore, it is shown how, through the use of the LPV framework, convex conditions can be obtained for incremental dissipativity analysis of discrete-time nonlinear systems. The developed concepts and tools are demonstrated by analyzing incremental dissipativity of a controlled unbalanced disk system

    Incremental Dissipativity based Control of Discrete-Time Nonlinear Systems via the LPV Framework

    Get PDF
    Unlike for Linear Time-Invariant (LTI) systems, for nonlinear systems, there exists no general framework for systematic convex controller design which incorporates performance shaping. The Linear Parameter-Varying (LPV) framework sought to bridge this gap by extending convex LTI synthesis results such that they could be applied to nonlinear systems. However, recent literature has shown that naive application of the LPV framework can fail to guarantee the desired asymptotic stability guarantees for nonlinear systems. Incremental dissipativity theory has been successfully used in the literature to overcome these issues for Continuous-Time (CT) systems. However, so far no solution has been proposed for output-feedback based incremental control for the Discrete-Time (DT) case. Using recent results on convex analysis of incremental dissipativity for DT nonlinear systems, in this paper, we propose a convex output-feedback controller synthesis method to ensure closed-loop incremental dissipativity of DT nonlinear systems via the LPV framework. The proposed method is applied on a simulation example, demonstrating improved stability and performance properties compared to a standard LPV controller design.Comment: Accepted to 60th Conference on Decision and Control, Austin, 202

    Nonlinear parameter‐varying state‐feedback design for a gyroscope using virtual control contraction metrics

    Get PDF
    In this article, we present a virtual control contraction metric (VCCM) based nonlinear parameter-varying approach to design a state-feedback controller for a control moment gyroscope (CMG) to track a user-defined trajectory set. This VCCM based nonlinear (NL) stabilization and performance synthesis approach, which is similar to linear parameter-varying (LPV) control approaches, allows to achieve exact guarantees of exponential stability and (Formula presented.) -gain performance on NL systems with respect to all trajectories from the predetermined set, which is not the case with the conventional LPV methods. Simulation and experimental studies conducted in both fully- and under-actuated operating modes of the CMG show effectiveness of this approach compared with standard LPV control methods

    Pupil response hazard rates predict perceived gaze durations

    Get PDF
    We investigated the mechanisms for evaluating perceived gaze-shift duration. Timing relies on the accumulation of endogenous physiological signals. Here we focused on arousal, measured through pupil dilation, as a candidate timing signal. Participants timed gaze-shifts performed by face stimuli in a Standard/Probe comparison task. Pupil responses were binned according to “Longer/Shorter” judgements in trials where Standard and Probe were identical. This ensured that pupil responses reflected endogenous arousal fluctuations opposed to differences in stimulus content. We found that pupil hazard rates predicted the classification of sub-second intervals (steeper dilation =“Longer” classifications). This shows that the accumulation of endogenous arousal signals informs gaze-shift timing judgements. We also found that participants relied exclusively on the 2nd stimulus to perform the classification, providing insights into timing strategies under conditions of maximum uncertainty. We observed no dissociation in pupil responses when timing equivalent neutral spatial displacements, indicating that a stimulus-dependent timer exploits arousal to time gaze-shifts

    The absence of an auditory-visual attentional blink is not due to echoic memory.

    Get PDF
    Als binnen een halve seconde twee visuele items in een serieel aangeboden stroom moeten worden geselecteerd, is de prestatie voor het tweede item vaak relatief slecht (er treedt een “attentional blink” op); wanneer het eerste echter item auditief wordt aangeboden, verdwijnt de blink meestal. We hebben aangetoond dat dit laatste niet wordt veroorzaakt doordat proefpersonen hun echoïsch geheugen gebruiken om de verwerking van het auditieve item uit te stellen tot na het einde van de visuele stroom

    The dynamics and neural correlates of audio-visual integration capacity as determined by temporal unpredictability, proactive interference, and SOA

    Get PDF
    Over 5 experiments, we challenge the idea that the capacity of audio-visual integration need be fixed at 1 item. We observe that the conditions under which audio-visual integration is most likely to exceed 1 occur when stimulus change operates at a slow rather than fast rate of presentation and when the task is of intermediate difficulty such as when low levels of proactive interference (3 rather than 8 interfering visual presentations) are combined with the temporal unpredictability of the critical frame (Experiment 2), or, high levels of proactive interference are combined with the temporal predictability of the critical frame (Experiment 4). Neural data suggest that capacity might also be determined by the quality of perceptual information entering working memory. Experiment 5 supported the proposition that audio-visual integration was at play during the previous experiments. The data are consistent with the dynamic nature usually associated with cross-modal binding, and while audio-visual integration capacity likely cannot exceed uni-modal capacity estimates, performance may be better than being able to associate only one visual stimulus with one auditory stimulus

    Disease concepts and treatment by tribal healers of an Amazonian forest culture

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The extensive medicinal plant knowledge of Amazonian tribal peoples is widely recognized in the scientific literature and celebrated in popular lore. Despite this broad interest, the ethnomedical systems and knowledge of disease which guide indigenous utilization of botanical diversity for healing remain poorly characterized and understood. No study, to our knowledge, has attempted to directly examine patterns of actual disease recognition and treatment by healers of an Amazonian indigenous culture.</p> <p>Methods</p> <p>The establishment of traditional medicine clinics, operated and directed by elder tribal shamans in two remote Trio villages of the Suriname rainforest, presented a unique investigational opportunity. Quantitative analysis of clinic records from both villages permitted examination of diseases treated over a continuous period of four years. Cross-cultural comparative translations were articulated of recorded disease conditions through ethnographic interviews of elder Trio shamans and a comprehensive atlas of indigenous anatomical nomenclature was developed.</p> <p>Results</p> <p>20,337 patient visits within the period 2000 to 2004 were analyzed. 75 disease conditions and 127 anatomical terms are presented. Trio concepts of disease and medical practices are broadly examined within the present and historical state of their culture.</p> <p>Conclusion</p> <p>The findings of this investigation support the presence of a comprehensive and highly formalized ethnomedical institution within Trio culture with attendant health policy and conservation implications.</p

    Dissociable Influences of Auditory Object vs. Spatial Attention on Visual System Oscillatory Activity

    Get PDF
    Given that both auditory and visual systems have anatomically separate object identification (“what”) and spatial (“where”) pathways, it is of interest whether attention-driven cross-sensory modulations occur separately within these feature domains. Here, we investigated how auditory “what” vs. “where” attention tasks modulate activity in visual pathways using cortically constrained source estimates of magnetoencephalograpic (MEG) oscillatory activity. In the absence of visual stimuli or tasks, subjects were presented with a sequence of auditory-stimulus pairs and instructed to selectively attend to phonetic (“what”) vs. spatial (“where”) aspects of these sounds, or to listen passively. To investigate sustained modulatory effects, oscillatory power was estimated from time periods between sound-pair presentations. In comparison to attention to sound locations, phonetic auditory attention was associated with stronger alpha (7–13 Hz) power in several visual areas (primary visual cortex; lingual, fusiform, and inferior temporal gyri, lateral occipital cortex), as well as in higher-order visual/multisensory areas including lateral/medial parietal and retrosplenial cortices. Region-of-interest (ROI) analyses of dynamic changes, from which the sustained effects had been removed, suggested further power increases during Attend Phoneme vs. Location centered at the alpha range 400–600 ms after the onset of second sound of each stimulus pair. These results suggest distinct modulations of visual system oscillatory activity during auditory attention to sound object identity (“what”) vs. sound location (“where”). The alpha modulations could be interpreted to reflect enhanced crossmodal inhibition of feature-specific visual pathways and adjacent audiovisual association areas during “what” vs. “where” auditory attention
    corecore